Cross-Domain Metric Learning Based on Information Theory

نویسندگان

  • Hao Wang
  • Wei Wang
  • Chen Zhang
  • Fanjiang Xu
چکیده

Supervised metric learning plays a substantial role in statistical classification. Conventional metric learning algorithms have limited utility when the training data and testing data are drawn from related but different domains (i.e., source domain and target domain). Although this issue has got some progress in feature-based transfer learning, most of the work in this area suffers from non-trivial optimization and pays little attention to preserving the discriminating information. In this paper, we propose a novel metric learning algorithm to transfer knowledge from the source domain to the target domain in an information-theoretic setting, where a shared Mahalanobis distance across two domains is learnt by combining three goals together: 1) reducing the distribution difference between different domains; 2) preserving the geometry of target domain data; 3) aligning the geometry of source domain data with its label information. Based on this combination, the learnt Mahalanobis distance effectively transfers the discriminating power and propagates standard classifiers across these two domains. More importantly, our proposed method has closed-form solution and can be efficiently optimized. Experiments in two real-world applications demonstrate the effectiveness of our proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Investigating the Relationship between Learning Styles Based on kolb's Theory and Academic Status in Resident's of Islamic Azad university of Dentistry,Tehran Branch

Abstract   Background and Aim:  Learning styles are one of the manifestations of individual differences and answer the question of why not all people learn in the usual way and their learning outcomes and academic status are different. The present study examined the relationship between learning styles based on club theory and academic status in resdent of dentistry,faculty  of dentistry, Tehr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014